Sensoren aus dem Drucker

Mit einem 3D-Drucker hergestellter induktiver Näherungssensor

Quelle: Fraunhofer IPA/Foto: Rainer Bez

Sensoren aus dem Drucker

Beim 3D-Druck stellte die Integration elektronischer Komponenten und damit auch die Herstellung von individualisierten Sensoren bisher eine Herausforderung dar. Hier hat jetzt das Fraunhofer IPA zusammen mit den beiden Unternehmen ARBURG und Balluff einen Durchbruch erzielt.

Veröffentlicht am 22.7.2021

Lesezeit ca. 3 Minuten

Für Aufgaben in der Automatisierungstechnik sind Sensoren in individualisierter Form interessant, da diese vielseitig eingesetzt werden können. Induktive Näherungssensoren sind in zylindrischen Metallgehäusen verfügbar, in die eine Spule, eine Platine und ein Stecker in einer starren Konstellation eingebaut werden – eine Standard-Komponente mit festgelegter Geometrie. In der Automatisierungstechnik werden induktive Näherungssensoren in großer Stückzahl eingesetzt, um metallische Objekte berührungslos zu erkennen. Sie können in industriellen Anwendungen jedoch nicht nur registrieren, dass sich ein Bauteil angenähert hat, sondern auch in welcher Entfernung es sich befindet. Allerdings gibt es noch keine induktiven Näherungssensoren, die sich mit ihrer Gehäuseform in eine bestimmte Umgebung einpassen, etwa in einen Roboterarmgreiferfinger.

Ein Gehäuse mit beliebiger Form

Warum also nicht das Gehäuse des Sensors aus Kunststoff drucken, um es in beliebiger Form herstellen zu können? Genau das hat ein Forschungsteam vom Zentrum für additive Produktion am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA nun getan. Unterstützt wurde es dabei von Mitarbeitenden des Anlagenherstellers für die Kunststoffverarbeitung ARBURG GmbH & Co. KG sowie des Sensor- und Automatisierungsspezialisten Balluff GmbH. Für das Gehäuse des Sensors war ein Kunststoff mit hoher Durchschlagfestigkeit und flammhemmenden Eigenschaften gefordert. Die Fachleute wählten den teilkristallinen Kunststoff Polybutylenterephthalat (PBT), der standardmäßig als Spritzgusswerkstoff für die Herstellung von Elektronikgehäusen eingesetzt wird. Allerdings wurde eine solche Materialtype bislang nicht für den 3D-Druck verwendet, sodass Pionierarbeit nötig war.

Leiterbahnen im 3D-Druck

Der Kunststoff kam als Granulat in den sogenannten »freeformer«, das industrielle additive Fertigungssystem von ARBURG. Dieser verfügte über eine Materialaufbereitung mit spezieller Plastifizierschnecke. Nach dem Aufschmelzen des Standard-Granulats folgte das werkzeuglose Freiformen: Ein hochfrequent getakteter Düsenverschluss trug kleinste Kunststofftropfen aus, die mit Hilfe eines beweglichen Bauteilträgers exakt positioniert werden konnten. Auf diese Weise entstanden im freeformer Schicht für Schicht dreidimensionale Bauteile mit Kavitäten, in die während des Druckprozesses Bauteile eingelegt werden konnten. Um dies zu ermöglichen, unterbrach der freeformer den Bauprozess automatisch in den jeweiligen Schichten, sodass es möglich war Spule, Platine und Stecker passgenau zu integrieren. Mit einem Dispenser konnten im Anschluss, in einer separaten Anlage, die Leiterbahnen aus Silber im Inneren des Gehäuses erzeugt werden. Schlussendlich war es notwendig die Kavitäten mit dem freeformer zu überdrucken und mit Polyurethan zu vergießen.

Grafik Induktiver Näherungssensor
Demonstrator des individualisierten Sensors in den unterschiedlichen Fertigungsstufen: CAD-Konzept (oben links), nach der Integration der elektronischen Komponenten (oben rechts) und als fertiger Demonstrator (unten). (Quelle: Fraunhofer IPA)

Das Team stellte auf diese Weise mehr als 30 Demonstratoren der individualisierten Sensoren her, um sie anschließend auf Herz und Nieren zu testen: Die Bauteile mussten etwa Temperaturwechsel und Vibrationen verkraften, sie mussten wasserdicht sein und einen elektrischen Isolationstest bestehen. Durch Optimierung von Design und Herstellungsprozess wurden die Tests am Ende erfolgreich absolviert.

Das Forschungsprojekt »Elektronische Funktionsintegration in additiv gefertigte Bauteile« hatte eine Laufzeit von anderthalb Jahren. Stefan Pfeffer, der das Projekt am Fraunhofer IPA verantwortete, forscht derzeit in Kooperation mit ARBURG daran, wie zukünftig auch leitfähige Kunststoffe eingesetzt werden können, um weitere Anwendungsfelder zu erschließen.

Ihr Ansprechpartner

M.Sc. Stefan Pfeffer

Mitarbeiter der Gruppe Additive Fertigungsverfahren für Thermoplaste
Telefon: +49 711 970-1638